Resistor Color Duo
Intro
If you want to build something using a Raspberry Pi, you'll probably use resistors. For this exercise, you need to know two things about them:
- Each resistor has a resistance value.
- Resistors are small - so small in fact that if you printed the resistance value on them, it would be hard to read.
To get around this problem, manufacturers print color-coded bands onto the resistors to denote their resistance values. Each band has a position and a numeric value.
The first 2 bands of a resistor have a simple encoding scheme: each color maps to a single number. For example, if they printed a brown band (value 1) followed by a green band (value 5), it would translate to the number 15.
In this exercise you are going to create a helpful program so that you don't have to remember the values of the bands. The program will take color names as input and output a two digit number, even if the input is more than two colors!
The band colors are encoded as follows:
- Black: 0
- Brown: 1
- Red: 2
- Orange: 3
- Yellow: 4
- Green: 5
- Blue: 6
- Violet: 7
- Grey: 8
- White: 9
Task
From the example above: brown-green should return 15 brown-green-violet should return 15 too, ignoring the third color.
The Code
1 2 3 4 5 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|